References

 

1.

Vlemminx MWC, Thijssen KMJ, Bajlekov GI, Dieleman JP, Van Der Hout-Van Der Jagt MB, Oei SG. Electrohysterography for uterine monitoring during term labour compared to external tocodynamometry and intra-uterine pressure catheter. Eur J Obstet Gynecol Reprod Biol. August 2017;215:197–205.
 

2.

Cohen WR, Hayes-Gill B. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques. Acta Obstet Gynecol Scand. June 2014;93(6):590–5.
 

3.

Schiermeier S, Westhof G, Leven A, Hatzmann H, Reinhard J. Intra- interobserver variability of intrapartum cardiotocography: A multicenter study comparing the FIGO classification with computer analysis software. Gynecol Obstet Invest. 2011;72(3):169–73.
 

4.

Alfirevic Z, Devane D, Gyte GM, Cuthbert A. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Pregnancy and Childbirth Group, ed. Cochrane Database Syst Rev [Internet]. 3 February 2017 [cited 24 October 2018]; Available: http://doi.wiley.com/10.1002/14651858.CD006066.pub3
 

5.

Euliano TY, Nguyen MT, Marossero D, Edwards RK. Monitoring contractions in obese parturients: Electrohysterography compared with traditional monitoring. Obstet Gynecol. May 2007;109(5):1136–40.
 

6.

Horoba K, Jezewski J, Wrobel J, Graczyk S. Algorithm for detection of uterine contractions from electrohysterogram. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Istanbul, Turkey: IEEE; 2001 [cited 24 October 2018]. p. 2161–4. Available: http://ieeexplore.ieee.org/document/1017198/
 

7.

Rabotti C, Mischi M, van Laar JOEH, Oei GS, Bergmans JWM. Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals. Physiol Meas. July 2008;29(7):829–41.
 

8.

Leman H, Marque C, Gondry J. Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans Biomed Eng. October 1999;46(10):1222–9.
 

9.

Euliano TY, Nguyen MT, Darmanjian S, McGorray SP, Euliano N, Onkala A, et al. Monitoring uterine activity during labor: A comparison of 3 methods. Am J Obstet Gynecol. January 2013;208(1):66.e1-6.
 

10.

Hayes-Gill B, Hassan S, Mirza FG, Ommani S, Himsworth J, Solomon M, et al. Accuracy and reliability of uterine contraction identification using abdominal surface electrodes. Clin Med Insights Womens Health. January 2012;5:CMWH.S10444.
 

11.

Hadar E, Biron-Shental T, Gavish O, Raban O, Yogev Y. A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. August 2015;28(12):1367–74.
 

12.

Euliano TY, Nguyen MT, Darmanjian S, Busowski JD, Euliano N, Gregg AR. Monitoring uterine activity during labor: Clinician interpretation of electrohysterography versus intrauterine pressure catheter and tocodynamometry. Am J Perinatol. 2016;33(9):831–8. 
 

13.

Cerutti S, Baselli G, Civardi S, Ferrazzi E, Marconi AM, Pagani M, et al. Variability analysis of fetal heart rate signals as obtained from abdominal electrocardiographic recordings. J Perinat Med. 1986;14(6):445–52. 
 

14.

Sameni R, Clifford GD. A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol Ther J. 1 January 2010;3:4–20. 
 

15.

Oostendorp TF, van Oosterom A, Jongsma HW. The effect of changes in the conductive medium on the fetal ECG throughout gestation. Clin Phys Physiol Meas Off J Hosp Phys Assoc Dtsch Ges Med Phys Eur Fed Organ Med Phys. 1989;10 Suppl B:11–20. 
 

16.

Ungureanu M, Bergmans JWM, Oei SG, Strungaru R. Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique. Biomed Tech (Berl). February 2007;52(1):56–60. 
 

17.

Vullings R, Peters CHL, Sluijter RJ, Mischi M, Oei SG, Bergmans JWM. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings. Physiol Meas. 1 March 2009;30(3):291–307. 
 

18.

Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, et al. Adaptive noise cancelling: Principles and applications. Proc IEEE. 1975;63(12):1692–716. 
 

19.

Sameni R. (2008). Extraction of Fetal Cardiac Signals From An Array of Maternal Abdominal Recordings. Ph.D. thesis, Sharif University of Technology – Institut National Polytechnique de Grenoble.
 

20.

Kanjilal PP, Palit S, Saha G. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans Biomed Eng. January 1997;44(1):51–9.
 

21.

De Lathauwer L, De Moor B, Vandewalle J. Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans Biomed Eng. May 2000;47(5):567–72. 
 

22.

Andreotti F, Riedl M, Himmelsbach T, Wedekind D, Wessel N, Stepan H, et al. Robust fetal ECG extraction and detection from abdominal leads. Physiol Meas. August 2014;35(8):1551–67.
 

23.

Varanini M, Tartarisco G, Billeci L, Macerata A, Pioggia G, Balocchi R. An efficient unsupervised fetal QRS complex detection from abdominal maternal ECG. Physiol Meas. August 2014;35(8):1607–19. 
 

24.

Behar J, Oster J, Clifford GD. Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data. Physiol Meas. August 2014;35(8):1569–89. 
 

25.

Lipponen JA, Tarvainen MP. Principal component model for maternal ECG extraction in fetal QRS detection. Physiol Meas. August 2014;35(8):1637–48. 
 

26.

Behar J, Oster J, Clifford GD. Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data. Physiol Meas. August 2014;35(8):1569–89. 
 

27.

Rooijakkers MJ, Song S, Rabotti C, Oei SG, Bergmans JWM, Cantatore E, et al. Influence of electrode placement on signal quality for ambulatory pregnancy monitoring. Comput Math Methods Med. 2014;2014:960980.
 

28.

Vullings R, Mischi M, Oei SG, Bergmans JWM. Novel Bayesian vectorcardiographic loop alignment for improved monitoring of ECG and fetal movement. IEEE Trans Biomed Eng. June 2013;60(6):1580–8. 
 

29.

Euliano TY, Darmanjian S, Nguyen MT, Busowski JD, Euliano N, Gregg AR. Monitoring fetal heart rate during labor: A comparison of three methods. J Pregnancy. 2017;2017:1–5. 
 

30.

Cohen WR, Ommani S, Hassan S, Mirza FG, Solomon M, Brown R, et al. Accuracy and reliability of fetal heart rate monitoring using maternal abdominal surface electrodes: Maternal surface electrode fetal monitoring. Acta Obstet Gynecol Scand. November 2012;91(11):1306–13. 
 

31.

Neilson DR, Freeman RK, Mangan S. Signal ambiguity resulting in unexpected outcome with external fetal heart rate monitoring. Am J Obstet Gynecol. June 2008;198(6):717–24. 
 

32.

Georgieva A, Redman CWG, Papageorghiou AT. Computerized data-driven interpretation of the intrapartum cardiotocogram: a cohort study. Acta Obstet Gynecol Scand. July 2017;96(7):883–91. 
 

33.

Doret M, Spilka J, Chudáček V, Gonçalves P, Abry P. Fractal analysis and Hurst parameter for intrapartum fetal heart rate variability analysis: A versatile alternative to frequency bands and LF/HF ratio. Schmitt FG, ed. PLOS ONE. 31 August 2015;10(8):e0136661. 
 

34.

Warmerdam GJJ, Vullings R, Van Laar JOEH, Van der Hout-Van der Jagt MB, Bergmans JWM, Schmitt L, et al. Detection rate of fetal distress using contraction-dependent fetal heart rate variability analysis. Physiol Meas. 28 February 2018;39(2):025008.
 

35.

Signorini MG, Fanelli A, Magenes G. Monitoring fetal heart rate during pregnancy: Contributions from advanced signal processing and wearable technology. Comput Math Methods Med. 2014;2014:707581.
 

36.

Greene KR, Dawes GS, Lilja H, Rosén K-G. Changes in the ST waveform of the fetal lamb electrocardiogram with hypoxemia. Am J Obstet Gynecol. December 1982;144(8):950–8.